Algebra 1 Chapter 3 Practice Test

1. Which of the following represent functions?
I.

Input	Output
4	0
5	0
6	-1
7	-1

II.

Input	Output
2	8
4	6
6	4
8	2

III.

Input	Output
-2	0
1	1
1	2
2	3

a. All
b. I and II
c. I and III
d. II and III
2. Determine whether the graph represents a function.

a. The relation is not a function.
b. The relation is a function.
3. Does the input-output table represent a function? If it does represent a function, list the domain and range.

Input	1	2	3	4
Output	7	11	15	19

4. Which of the following data sets is best described by a linear function?
a. $\{(1,0),(2,0),(3,2),(4,2)\}$
b. $\{(-5,-2),(-6,2),(-7,-2),(-8,2)\}$
c. $\{(-1,-8),(0,-6),(1,-4),(2,-2)\}$
d. $\{(10,5),(11,8),(12,12),(13,17)\}$
5. Classify the function as discrete or continuous for the given domain. Then identify the range of the function.
$y=\frac{1}{2} x+6 ;$ domain $x \geq 4$
6. Classify the function as discrete or continuous for the given domain. Then identify the range of the function.
$y=\frac{1}{2} x+5 ;$ domain: $x=-4,-2,0,2,4$
7. At a convenience store, bottles of water cost $\$ 1.20$ each. The function $f(x)=1.2 x$ gives the cost of buying x bottles. Give a reasonable domain and range for the function in this context.
8. Evaluate $f(x)=3 x-9$, when $x=-2$.
a. $\quad-18$
b. -33
c. -3
d. -15
9. For $f(x)=3 x+18$, what is the value of x for which $f(x)=21$?
a. $x=2$
C. $x=1$
b. $x=5$
d. $x=-1$
10. The domain of the function f is the set of integers greater than -8 . Which of the following values represent elements of the range of f ?
a. $f(2.5)$
b. $f(-2)$
c. $f(-8)$
d. $f(4)$
e. $f\left(\frac{1}{5}\right)$
f. $f(0)$
g. $f(8)$
h. $f(-12)$
11. For the function f, each range value is associated with only one domain value. The range of f is $\left\{f\left(\frac{2}{7}\right), f(7), f(9.7), f(14), f(21)\right\}$. What is the domain of f ? Explain your answer.
12. Use intercepts to graph the linear equation $2 x-3 y=-18$.
a. x-intercept: $-\frac{15}{2}, y$-intercept: $\frac{22}{3}$

c. x-intercept: $-9, y$-intercept: $\frac{22}{3}$

b. x-intercept: $-\frac{15}{2}, y$-intercept: 6
d. x-intercept: $-9, y$-intercept: 6

13. Graph the function $y=-2 x+2$.
a.

c.

b.

d.

14. The Tome family is renting a car for a few days. Meinke Rentals charges $\$ 48$ per day, plus a fixed cleaning fee of $\$ 30$. The function $M(d)=48 d+30$ represents the cost to rent a car from Meinke Rentals for d days. SmartRent charges $\$ 60$ per day. The function $S(d)=60 d$ represents the cost to rent a car from SmartRent for d days. Graph M and S on the same coordinate plane. Describe the transformations from the graph of M to the graph of S..
a.

A vertical shift down 30 units, followed by a vertical stretch by a factor of 1.25 .
b.

A vertical stretch by a factor of 1.25 , followed by a vertical shift down 30 units.
c.

A vertical shrink by a factor of 0.8 , followed by a vertical shift up 24 units.
d.

A vertical shift up 24 units, followed by a vertical shrink by a factor of 0.8 .
15. The pressure in a car tire is given by $p(x)=30-x$ where p is pressure in psi and x is the number of months since the tire was filled. Describe what this function represents.
a. The initial tire pressure is 30 psi , and it goes down by 1 psi each month.
b. The initial tire pressure is 30 psi , and it increases by 1 psi each month.
c. The initial tire pressure is 1 psi, and it increases by 30 psi each month.
d. The initial tire pressure is 1 psi , and it goes down by 30 psi each month.
16. The graph shows membership costs at a gym. What is the cost per month?

17. Describe the effect of the transformation $(x, y) \rightarrow(x, 9 y)$.
a. vertical translation of 9 units
c. vertical stretch with reflection
b. horizontal translation of 9 units
d. vertical stretch without reflection
18. Let $g(x)$ be a vertical shift of $f(x)=-x$ down 8 units followed by a vertical shrink by a factor of $\frac{1}{2}$. Write the rule for $g(x)$.
a. $g(x)=-2 x-8$
b. $g(x)=-\frac{1}{2} x-8$
c. $g(x)=-\frac{1}{2} x-4$
d. $g(x)=-2 x-16$
19. What must be done to the graph of $f(x)=|x|$ to obtain the graph of the function $g(x)=\frac{2}{3}|x+6|-8$?
a.

The graph of f is shifted left 6 units, horizontally shrunk by a factor of $\frac{2}{3}$, and shifted down 8 units.
b.

The graph of f is shifted right 6 units, vertically shrunk by a factor of $\frac{2}{3}$, and shifted down 8 units.
c. The graph of f is shifted left 6 units, vertically shrunk by a factor of $\frac{2}{3}$, and shifted down 8 units.
d. The graph of f is shifted left 6 units, vertically shrunk by a factor of $\frac{2}{3}$, and shifted up 8 units.
20. What is the vertex of the graph?

a. $(-5,0)$
b. $(0,-5)$
c. $(1,-6)$
d. $(7,0)$

Algebra 1 Chapter 3 Practice Test Answer Section

1. ANS: B

PTS: 1
REF: A1.01.EN.ST. 10
NAT: NT.CCSS.MTH.10.9-12.F.IF. 1
LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.b
KEY: functions DOK: DOK 1
NOT: Sec 3.1
2. ANS: B PTS: 1

REF: 0821e390-1a76-11df-b9de-001e33aa91d2
NAT: NT.CCSS.MTH.10.9-12.F.IF. 1 LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.b
KEY: functions | relations | vertical line test
DOK: DOK 1
NOT: Sec 3.1
3. ANS:

Yes, the table does represent a function. The collection of the input values is the domain: $1,2,3$, and 4 ; the collection of output values is the range: $7,11,15$, and 19.

PTS: 1 REF: MALG0194 NAT: NT.CCSS.MTH.10.9-12.F.IF. 1
LOC: NCTM.PSSM.00.MTH.9-12.ALG.4.a TOP: Represent Functions as Rules and Tables
KEY: equation | function | table DOK: DOK $1 \quad$ NOT: Sec 3.1
4. ANS: C PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.LE. 1

DOK: DOK 1 NOT: Sec 3.2
5. ANS:

The function is continuous. The range is $y \geq 8$.
PTS: 1 REF: 08f5bdf0-1a76-11df-b9de-001e33aa91d2
NAT: NT.CCSS.MTH.10.9-12.F.IF. 5 LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP: Identify Discrete and Continuous Functions KEY: discrete | continuous
DOK: DOK 1 NOT: Sec 3.2
6. ANS:

The function is discrete. The range is $3,4,5,6$, and 7
PTS: 1 REF: 0901a4d0-1a76-11df-b9de-001e33aa91d2
NAT: NT.CCSS.MTH.10.9-12.F.IF. 5 LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.c
TOP: Identify Discrete and Continuous Functions KEY: discrete | continuous
DOK: DOK 1 NOT: Sec 3.2
7. ANS:
domain: $\{0,1,2,3,4,5, \ldots\}$;
range: $\{0,1.2,2.4,3.6,4.8,6, \ldots\}$
PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF. 5 DOK: DOK 1
NOT: Sec 3.2
8. ANS: D PTS: 1 REF: 1068edc2-4683-11df-9c7d-001185f0d2ea

OBJ: Evaluating Functions
NAT: NT.CCSS.MTH.10.9-12.F.IF.1 | NT.CCSS.MTH.10.9-12.F.IF. 2
STA: PA.PAAS.MTH.02.9-11.2.8.11.R LOC: MTH.C.10.07.01.011
TOP: Writing Functions KEY: function | input | output | evaluate
DOK: DOK 2 NOT: Sec 3.3
9. ANS: CTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF. 2

DOK: DOK 2 NOT: Sec 3.3
10. ANS: B, D, F, G

A: 2.5 is not an integer, so it is not in the domain of f.
$f(2.5)$ does not represent an element of the range of f.
B: -2 is an integer and it is greater than -8 , so it is in the domain of f.
$f(-2)$ is the element of the range assigned to -2 .
$\mathrm{C}:-8$ is an integer, but it is not greater than -8 , so it is not in the domain of f.
$f(-8)$ does not represent an element of the range of f.
D: 4 is an integer and it is greater than -8 , so it is in the domain of f.
$f(4)$ is the element of the range assigned to 4 .
E: $\frac{1}{5}$ is not an integer, so it is not in the domain of f.
$f\left(\frac{1}{5}\right)$ does not represent an element of the range of f.
F: 0 is an integer and it is greater than -8 , so it is in the domain of f.
$f(0)$ is the element of the range assigned to 0 .
G: 8 is an integer and it is greater than -8 , so it is in the domain of f.
$f(8)$ is the element of the range assigned to 8 .
$\mathrm{H}:-12$ is an integer, but it is not greater than -8 , so it is not in the domain of f.
$f(-12)$ does not represent an element of the range of f.

	Feedback
Correct	That's correct!
Incorrect	A function assigns each element of its domain to exactly one element of its range.

PTS: 2
KEY: function | domain | range | function values
DOK: DOK 1
NOT: Sec 3.3
11. ANS:

The domain of f is $\left\{\frac{2}{7}, 7,9.7,14,21\right\}$.
Since the range is $\left\{f\left(\frac{2}{7}\right), f(7), f(9.7), f(14), f(21)\right\}$, and each range value is associated with only one domain value, the domain must contain only the values of x being mapped to each of the range values. So, the domain contains $\frac{2}{7}, 7,9.7,14$, and 21.

Rubric

1 point for the domain;
2 points for explanation
PTS: 3
NAT: NT.CCSS.MTH.10.9-12.F.IF. 1 | NT.CCSS.MTH.10.K-12.MP. 3
KEY: function | domain | range DOK: DOK 2 NOT: Sec 3.3
12. ANS: D PTS: 1 REF: 10b53942-4683-11df-9c7d-001185f0d2ea

OBJ: Graphing Linear Equations by Using Intercepts NAT: NT.CCSS.MTH.10.9-12.F.IF.7.a
STA: PA.PAAS.MTH.02.9-11.2.8.11.K | PA.PAAA.MTH.07.11.M11.D.2.1.2
LOC: MTH.C.10.07.02.03.008
TOP: Using Intercepts

KEY: linear equation | graphing | x-intercept | y-intercept | intercepts
DOK: DOK 1 NOT: Sec 3.4
13. ANS: C PTS: 1 REF: 106db27a-4683-11df-9c7d-001185f0d2ea

OBJ: Graphing Functions
NAT: NT.CCSS.MTH.10.9-12.A.REI. 10 | NT.CCSS.MTH.10.9-12.F.IF. 2
STA: PA.PAAS.MTH.02.9-11.2.8.11.Q|PA.PAAS.MTH.02.9-11.2.8.11.R | PA.PAAA.MTH.07.11.M11.D.1.1.1
| PA.PAAA.MTH.07.11.M11.D.2.1.2 LOC: MTH.C.10.07.01.01.003
TOP: Graphing Functions KEY: graph | function
DOK: DOK 2 NOT: Sec 3.5
14. ANS: A PTS: 1 REF: 14787272-4683-11df-9c7d-001185f0d2ea

OBJ: Application NAT: NT.CCSS.MTH.10.9-12.A.CED. 2 | NT.CCSS.MTH.10.9-12.F.BF. 3
TOP: Transforming Linear Functions KEY: transform linear functions
DOK: DOK 2 NOT: Sec 3.5 and 3.6
15. ANS: A PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.LE. 5

KEY: linear | function | parameter \quad DOK: DOK $1 \quad$ NOT: Sec 3.5
16. ANS:
\$25

PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF. 4 DOK: DOK 1
NOT: Sec 3.5
17. ANS: D PTS: 1

REF: 08e9d710-1a76-11df-b9de-001e33aa91d2
NAT: NT.CCSS.MTH.10.9-12.F.BF. 3 DOK: DOK 2 NOT: Sec 3.6
18. ANS: C PTS: 1 REF: 14784b62-4683-11df-9c7d-001185f0d2ea

OBJ: Combining Transformations of Linear Functions
NAT: NT.CCSS.MTH.10.9-12.A.CED. 2 | NT.CCSS.MTH.10.9-12.F.BF. 3
LOC: MTH.C.10.07.16.05.003 TOP: Transforming Linear Functions
KEY: transform linear functions | shift | translate | stretch DOK: DOK 2
NOT: Sec 3.6
19. ANS: C

Follow the order of operations to apply the transformations. First, notice that 6 is being added to x inside the absolute value bars. So, the graph of f is shifted left 6 units. Now, notice that the absolute value expression is being multiplied by $\frac{2}{3}$. So, the graph of f is being vertically shrunk by a factor of $\frac{2}{3}$. Finally, 8 is being subtracted from the first term of f. So, the graph of f is being shifted down 8 units.

	Feedback
A	Recall that a horizontal shrink occurs when x is multiplied by a constant k, where $0<k<1$, before any horizontal shifts occur.
\mathbf{B}	In horizontal shifts of the form $f(x+k)$, where k is a constant, the graph is moved in the opposite direction of the sign of k.
\mathbf{C}	That's correct!
\mathbf{D}	In vertical shifts of the form $f(x)+k$, where k is a constant, the graph is moved in the same direction of the sign of k.

PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.BF. 3
KEY: absolute value function | vertical stretch | horizontal shifts | vertical shifts | transformations
DOK: DOK 1 NOT: Sec 3.7
20. ANS: C

The vertex is $(-2,-4)$.

	Feedback
A	This is one of the points where the function intersects the x-axis.
B	This is the point where the function intersects the y-axis.
C	That's correct!
D	This is one of the points where the function intersects the x-axis.

PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF.7.b*
KEY: absolute value function | graph of a function | function | vertex
DOK: DOK 1 NOT: Sec 3.7

