## Algebra 1 Chapter 3 Practice Test

1. Which of the following represent functions?

| I. | Input | Output |
|----|-------|--------|
|    | 4     | 0      |
|    | 5     | 0      |
|    | 6     | -1     |
|    | 7     | -1     |

| II. | Input | Output |
|-----|-------|--------|
|     | 2     | 8      |
|     | 4     | 6      |
|     | 6     | 4      |
|     | 8     | 2      |

| III. | Input | Output |
|------|-------|--------|
|      | -2    | 0      |
|      | 1     | 1      |
|      | 1     | 2      |
|      | 2     | 3      |

- a. All
- b. I and II
- c. I and III
- d. II and III
- 2. Determine whether the graph represents a function.



- b. The relation is a function.
- 3. Does the input-output table represent a function? If it does represent a function, list the domain and range.

| Input  | 1 | 2  | 3  | 4  |
|--------|---|----|----|----|
| Output | 7 | 11 | 15 | 19 |

- 4. Which of the following data sets is best described by a linear function?
  - a.  $\{(1, 0), (2, 0), (3, 2), (4, 2)\}$ b.  $\{(-5, -2), (-6, 2), (-7, -2), (-8, 2)\}$ c.  $\{(-1, -8), (0, -6), (1, -4), (2, -2)\}$ d.  $\{(10, 5), (11, 8), (12, 12), (13, 17)\}$
- 5. Classify the function as discrete or continuous for the given domain. Then identify the range of the function.

$$y = \frac{1}{2}x + 6; \text{ domain } x \ge 4$$

6. Classify the function as discrete or continuous for the given domain. Then identify the range of the function.

$$y = \frac{1}{2}x + 5$$
; domain:  $x = -4, -2, 0, 2, 4$ 

- 7. At a convenience store, bottles of water cost \$1.20 each. The function f(x) = 1.2x gives the cost of buying x bottles. Give a reasonable domain and range for the function in this context.
- 8. Evaluate f(x) = 3x 9, when x = -2. a. -18 b. -33 c. -3 d. -15
- 9. For f(x) = 3x + 18, what is the value of x for which f(x) = 21?
  a. x = 2
  b. x = 5
  c. x = 1
  d. x = -1
- 10. The domain of the function f is the set of integers greater than -8. Which of the following values represent elements of the range of f?
  - a. f(2.5)e.  $f\left(\frac{1}{5}\right)$ b. f(-2)f. f(0)c. f(-8)g. f(8)d. f(4)h. f(-12)
- 11. For the function *f*, each range value is associated with only one domain value. The range of *f* is  $\left\{f\left(\frac{2}{7}\right), f(7), f(9.7), f(14), f(21)\right\}$ . What is the domain of *f*? Explain your answer.
- 12. Use intercepts to graph the linear equation 2x 3y = -18.





14. The Tome family is renting a car for a few days. Meinke Rentals charges \$48 per day, plus a fixed cleaning fee of \$30. The function M(d) = 48d + 30 represents the cost to rent a car from Meinke Rentals for *d* days. SmartRent charges \$60 per day. The function S(d) = 60d represents the cost to rent a car from SmartRent for *d* days. Graph *M* and *S* on the same coordinate plane. Describe the transformations from the graph of *M* to the graph of *S*.





A vertical shift down 30 units, followed by a vertical stretch by a factor of 1.25.





A vertical shrink by a factor of 0.8, followed by a vertical shift up 24 units.



A vertical shift up 24 units, followed by a vertical shrink by a factor of 0.8.

15. The pressure in a car tire is given by p(x) = 30 - x where p is pressure in psi and x is the number of months since the tire was filled. Describe what this function represents.

с.

- a. The initial tire pressure is 30 psi, and it goes down by 1 psi each month.
- b. The initial tire pressure is 30 psi, and it increases by 1 psi each month.
- c. The initial tire pressure is 1 psi, and it increases by 30 psi each month.
- d. The initial tire pressure is 1 psi, and it goes down by 30 psi each month.
- 16. The graph shows membership costs at a gym. What is the cost per month?



- 17. Describe the effect of the transformation  $(x, y) \rightarrow (x, 9y)$ .
  - a. vertical translation of 9 units
  - b. horizontal translation of 9 units
- c. vertical stretch with reflection
- d. vertical stretch without reflection
- 18. Let g(x) be a vertical shift of f(x) = -x down 8 units followed by a vertical shrink by a factor of  $\frac{1}{2}$ . Write the rule for g(x).
  - a. g(x) = -2x 8b.  $g(x) = -\frac{1}{2}x - 8$ c.  $g(x) = -\frac{1}{2}x - 4$ d. g(x) = -2x - 16
- 19. What must be done to the graph of f(x) = |x| to obtain the graph of the function  $g(x) = \frac{2}{3}|x+6| 8$ ?
  - a. The graph of f is shifted left 6 units, horizontally shrunk by a factor of  $\frac{2}{3}$ , and shifted down 8 units.
  - b. The graph of *f* is shifted right 6 units, vertically shrunk by a factor of  $\frac{2}{3}$ , and shifted down 8 units.
  - c. The graph of *f* is shifted left 6 units, vertically shrunk by a factor of  $\frac{2}{3}$ , and shifted down 8 units.

d. The graph of *f* is shifted left 6 units, vertically shrunk by a factor of  $\frac{2}{3}$ , and shifted up 8 units.

20. What is the vertex of the graph?



## Algebra 1 Chapter 3 Practice Test Answer Section

1. ANS: B PTS: 1 REF: A1.01.EN.ST.10 NAT: NT.CCSS.MTH.10.9-12.F.IF.1 LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.b NOT: Sec 3.1 KEY: functions DOK: DOK 1 2. ANS: B REF: 0821e390-1a76-11df-b9de-001e33aa91d2 PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF.1 LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.b KEY: functions | relations | vertical line test DOK: DOK 1 NOT: Sec 3.1 3. ANS: Yes, the table does represent a function. The collection of the input values is the domain: 1, 2, 3, and 4; the collection of output values is the range: 7, 11, 15, and 19. PTS: 1 REF: MALG0194 NAT: NT.CCSS.MTH.10.9-12.F.IF.1 LOC: NCTM.PSSM.00.MTH.9-12.ALG.4.a TOP: Represent Functions as Rules and Tables NOT: Sec 3.1 KEY: equation | function | table DOK: DOK 1 4. ANS: C PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.LE.1 DOK: DOK 1 NOT: Sec 3.2 5. ANS: The function is continuous. The range is  $y \ge 8$ . PTS: 1 REF: 08f5bdf0-1a76-11df-b9de-001e33aa91d2 NAT: NT.CCSS.MTH.10.9-12.F.IF.5 LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.c TOP: Identify Discrete and Continuous Functions KEY: discrete | continuous DOK: DOK 1 NOT: Sec 3.2 6. ANS: The function is discrete. The range is 3, 4, 5, 6, and 7 PTS: 1 REF: 0901a4d0-1a76-11df-b9de-001e33aa91d2 NAT: NT.CCSS.MTH.10.9-12.F.IF.5 LOC: NCTM.PSSM.00.MTH.9-12.ALG.1.c TOP: Identify Discrete and Continuous Functions KEY: discrete | continuous DOK: DOK 1 NOT: Sec 3.2 7. ANS: domain: {0, 1, 2, 3, 4, 5, ...}; range: {0, 1.2, 2.4, 3.6, 4.8, 6, ...} PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF.5 DOK: DOK 1 NOT: Sec 3.2 8. ANS: D PTS: 1 REF: 1068edc2-4683-11df-9c7d-001185f0d2ea **OBJ:** Evaluating Functions NAT: NT.CCSS.MTH.10.9-12.F.IF.1 | NT.CCSS.MTH.10.9-12.F.IF.2 STA: PA.PAAS.MTH.02.9-11.2.8.11.R LOC: MTH.C.10.07.01.011 TOP: Writing Functions KEY: function | input | output | evaluate DOK: DOK 2 NOT: Sec 3.3 9. ANS: C PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF.2 DOK: DOK 2 NOT: Sec 3.3 10. ANS: B, D, F, G

- A: 2.5 is not an integer, so it is not in the domain of f. f(2.5) does not represent an element of the range of f.
- B: -2 is an integer and it is greater than -8, so it is in the domain of f. f(-2) is the element of the range assigned to -2.
- C: -8 is an integer, but it is not greater than -8, so it is not in the domain of f. f(-8) does not represent an element of the range of f.
- D: 4 is an integer and it is greater than -8, so it is in the domain of f. f(4) is the element of the range assigned to 4.
- E:  $\frac{1}{5}$  is not an integer, so it is not in the domain of f.

 $f\left(\frac{1}{5}\right)$  does not represent an element of the range of f.

- F: 0 is an integer and it is greater than -8, so it is in the domain of f. f(0) is the element of the range assigned to 0.
- G: 8 is an integer and it is greater than -8, so it is in the domain of f. f(8) is the element of the range assigned to 8.
- H: -12 is an integer, but it is not greater than -8, so it is not in the domain of f. f(-12) does not represent an element of the range of f.

|           | Feedback                                                                    |  |
|-----------|-----------------------------------------------------------------------------|--|
| Correct   | That's correct!                                                             |  |
| Incorrect | A function assigns each element of its domain to exactly one element of its |  |
|           | range.                                                                      |  |

PTS: 2 NAT: NT.CCSS.MTH.10.9-12.F.IF.1 KEY: function | domain | range | function values DOK: DOK 1 NOT: Sec 3.3

11. ANS:

The domain of f is  $\left\{\frac{2}{7}, 7, 9.7, 14, 21\right\}$ . Since the range is  $\left\{f\left(\frac{2}{7}\right), f(7), f(9.7), f(14), f(21)\right\}$ , and each range value is associated with only one domain

value, the domain must contain only the values of  $\bar{x}$  being mapped to each of the range values. So, the domain contains  $\frac{2}{7}$ , 7, 9.7, 14, and 21.

## Rubric

1 point for the domain; 2 points for explanation

|     | PTS: | 3 NAT: NT.CCSS.MTH.10                    | 9-12.F.IF.1   NT | .CCSS.MTH.10.K-12.MP.3            |
|-----|------|------------------------------------------|------------------|-----------------------------------|
|     | KEY: | function   domain   range DOK            | : DOK 2          | NOT: Sec 3.3                      |
| 12. | ANS: | D PTS: 1 REF                             | 10b53942-468     | 33-11df-9c7d-001185f0d2ea         |
|     | OBJ: | Graphing Linear Equations by Using Inter | cepts            | NAT: NT.CCSS.MTH.10.9-12.F.IF.7.a |
|     | STA: | PA.PAAS.MTH.02.9-11.2.8.11.K   PA.PA     | AA.MTH.07.11     | .M11.D.2.1.2                      |
|     | LOC: | MTH.C.10.07.02.03.008 TOP                | : Using Intercep | ots                               |

KEY: linear equation | graphing | x-intercept | y-intercept | intercepts DOK: DOK 1 NOT: Sec 3.4 13. ANS: C PTS: 1 REF: 106db27a-4683-11df-9c7d-001185f0d2ea **OBJ:** Graphing Functions NAT: NT.CCSS.MTH.10.9-12.A.REI.10 | NT.CCSS.MTH.10.9-12.F.IF.2 STA: PA.PAAS.MTH.02.9-11.2.8.11.Q | PA.PAAS.MTH.02.9-11.2.8.11.R | PA.PAAA.MTH.07.11.M11.D.1.1.1 | PA.PAAA.MTH.07.11.M11.D.2.1.2 LOC: MTH.C.10.07.01.01.003 **TOP:** Graphing Functions KEY: graph | function DOK: DOK 2 NOT: Sec 3.5 14. ANS: A PTS: 1 REF: 14787272-4683-11df-9c7d-001185f0d2ea OBJ: Application NAT: NT.CCSS.MTH.10.9-12.A.CED.2 | NT.CCSS.MTH.10.9-12.F.BF.3 TOP: Transforming Linear Functions KEY: transform linear functions DOK: DOK 2 NOT: Sec 3.5 and 3.6 15. ANS: A PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.LE.5 KEY: linear | function | parameter DOK: DOK 1 NOT: Sec 3.5 16. ANS: \$25 PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF.4 DOK: DOK 1 NOT: Sec 3.5 17. ANS: D PTS: 1 REF: 08e9d710-1a76-11df-b9de-001e33aa91d2 NAT: NT.CCSS.MTH.10.9-12.F.BF.3 DOK: DOK 2 NOT: Sec 3.6 18. ANS: C PTS: 1 REF: 14784b62-4683-11df-9c7d-001185f0d2ea **OBJ:** Combining Transformations of Linear Functions NAT: NT.CCSS.MTH.10.9-12.A.CED.2 | NT.CCSS.MTH.10.9-12.F.BF.3 LOC: MTH.C.10.07.16.05.003 **TOP:** Transforming Linear Functions KEY: transform linear functions | shift | translate | stretch DOK: DOK 2 NOT: Sec 3.6 19. ANS: C Follow the order of operations to apply the transformations. First, notice that 6 is being added to x inside the absolute value bars. So, the graph of f is shifted left 6 units. Now, notice that the absolute value expression is being multiplied by  $\frac{2}{3}$ . So, the graph of f is being vertically shrunk by a factor of  $\frac{2}{3}$ . Finally, 8 is being subtracted from the first term of f. So, the graph of f is being shifted down 8 units.

|   | Feedback                                                                                     |
|---|----------------------------------------------------------------------------------------------|
| Α | Recall that a horizontal shrink occurs when $x$ is multiplied by a constant $k$ , where      |
|   | 0 < k < 1, before any horizontal shifts occur.                                               |
| В | In horizontal shifts of the form $f(x + k)$ , where k is a constant, the graph is moved in   |
|   | the opposite direction of the sign of $k$ .                                                  |
| С | That's correct!                                                                              |
| D | In vertical shifts of the form $f(x) + k$ , where k is a constant, the graph is moved in the |
|   | same direction of the sign of $k$ .                                                          |

PTS: 1 NAT: NT.CCSS.MTH.10.9-12.F.BF.3

KEY: absolute value function | vertical stretch | horizontal shifts | vertical shifts | transformations DOK: DOK 1 NOT: Sec 3.7

20. ANS: C



|   | Feedback                                                                    |  |
|---|-----------------------------------------------------------------------------|--|
| Α | This is one of the points where the function intersects the <i>x</i> -axis. |  |
| В | This is the point where the function intersects the <i>y</i> -axis.         |  |
| С | That's correct!                                                             |  |
| D | This is one of the points where the function intersects the <i>x</i> -axis. |  |

- **PTS**: 1 NAT: NT.CCSS.MTH.10.9-12.F.IF.7.b\*
- KEY: absolute value function | graph of a function | function | vertex DOK: DOK 1 NOT: Sec 3.7